
WORKING WITH SAS® DATE AND TIME FUNCTIONS
Andrew H. Karp

Sierra Information Services, Inc.
Sonoma, California USA

Introduction

Most SAS Software users need to work with
data sets that contain one or more variables
(columns) containing the date and/or time at
which an event occurred. This paper describes
some of the core SAS System tools you can use
with your date and time data, and discusses
how these tools can simplify many of the tasks
commonly performed on this type of variable.
We will also discuss some of the new features
for date and time variables that have been
added in recent releases of SAS Software, as
well as some enhancements you can expect in
the forthcoming release of SAS 9 and SAS 9.1

SAS users often need to determine the

• frequency that a phenomenon
of interest occurs in time (e.g.,
how many vehicles crossed the
bridge in May 2003?)

• number of time intervals which
have elapsed between two
events (e.g., how many days
elapsed between surgery and
patient discharge?)

In addition, SAS Software users need to

• operate conditionally on the
observations based on the
value of date or time variables.
(e.g., select only claim records
where the submission date is
prior to January 1, 2003)

• aggregate observations from a
higher time frequency interval to
a lower frequency interval (e.g.,
daily to monthly)

• interpolate missing values in a
time series prior to aggregation
or analyzing the series using
tools available in, for example,
SAS/ETS™ software.

• interpolate higher frequency
interval observations from data
collected at lower frequencies
(e.g., estimate weekly values

from a series of data collected
monthly)

• create a SAS date, time, or
datetime variables from “raw
data” during Data Step.

The SAS System provides a wealth of tools for
users who need to work with data collected in
the time domain.

These tools can be broken down in to several
broad categories:

• Informats
• Functions
• SAS Programming Language Elements
• SAS System Options
• Procedures
• Macro Symbol Table Values

We will explore the tools in each of these
categories later in the paper. In order to to take
advantage of them, we need to first understand
the core concepts about how the SAS System
stores the values of variables representing dates
and times.

Core Concepts

A SAS date, time or datetime variable is a
special case of the numeric variable. The
values of a date variable represent the number
of days before or after January 1, 1960, and the
values of a time variable are the number of
seconds since midnight. In the SAS System, a
date value of zero (0) represents January 1,
1960 and a time value of zero (0) represents
midnight.

A time variable is independent of a date
variable. Similarly, a SAS datetime variable
contains both date and time information (e.g.,
January 20, 1994 at 4:13 p.m.) as the number of
seconds from midnight at January 1, 1960.

Many SAS users who work with data obtained
by using SAS/ACCESS software to RDBMS
products such as SYBASE or ORACLE will
need to understand how to work with SAS
datetime variables.

A SAS date value is a constant that represents a
fixed value. Valid SAS dates are from 1582 A.
D. (following adoption of the Gregorian
Calendar) to 20,000 A. D.

Since SAS stores the values of dates and times
a numbers, a format is almost always required
when portraying them in SAS-generated output
(see below).

Informats: Creating SAS Date Variables from
Raw Data

Many raw data files contain columns (variables)
with date values written in, say, MMDDYY or
MM/DD/YYYY format. For example, the value in
the field may be 01MAY2003 or 01/05/2003. In
some situations the European method of writing
dates, DDMMYY, might be used, so the value of
the field might appear as 05/01/2003.

Broadly speaking, an Informat gives the SAS
System instructions on how to convert fields in a
raw data file to variables in a SAS data set.
Informats are placed in the INPUT Statement
and SAS uses them when making variables in
SAS data sets from the fields/columns in your
raw data file.

There are several Informats available that are
designed to transform columns of raw data
containing date fields in to the values of SAS
date, time or datetime variables. To use them
correctly, you MUST know how the date field is
structured in the raw data file. Otherwise, you
are likely to make a major, and possibly
undetectable, error in your program. Specifying
the MMDDYY10. Informat instead of the
DDMMYY10. Informat, for example, means that
the first two values of the raw data field
represent the month, rather than the day of the
month. Take the time to understand your raw
data values before applying SAS Informats in
your INPUT Statements!

Example: Using the YYMMDD8. Informat
A variable in a raw data set which has the format
YYMMDD8. (e.g., 20030425 for April 15, 2003)
can be converted to a SAS date variable by
using the YYMMDD8. informat in the Data
Step. Using this informat ‘converts’ the values
of the raw data field to SAS date variable. Other
commonly used SAS date informats include
DDMMYY8. , MMDDYY8. and DATETIME18.

Example: ANZAC Day (Australia) 2003
If a value of a variable raw data set to be read
by the SAS System contained a value
2003/04/25, the YYMMDD10. Informat can be
used to create a SAS date variable by placing
the informat immediately adjacent to the variable
name in the INPUT statement.

INPUT ANZACDAY YYMMDD10.;

The SAS System will automatically convert the
text representation of the raw data variable in to
a SAS date variable with a value of 15820, the
number of days between 1 January 1960 and 25
April 2003.

The ANYDATE Informats (SAS 9.1)
Even though SAS provides a wide range of
Informats for many different raw data structures
representing dates and times, there are still
some situations where the structure of the raw
data is not accommodated by the SAS-supplied
Informats.

The forthcoming release of SAS 9.1 will include
the new ANYDATE Informats, which will make it
even easier to convert your raw data fields in to
SAS date, time or datetime variables. Use of
the ANYDATE Informats will be aided by the
new (to SAS 9) DATESTYLE SAS System
Option, which is discussed below.

Functions for Date, Time and Datetime
Variables

The SAS Programming Language includes
several functions that are useful when working
with your date, time and datetime variables.
These functions can be used to:

• Create SAS date, time or datetime
variables

• Extract the ‘parts’ from an existing date,
time or datetime variable

• Determine the number of time intervals
which have elapsed between two events

• Assign the value of a variable to some
future date.

Functions That Create SAS Date, Time or
Datetime Variables

• MDY Function: this function creates a
SAS date variable from three arguments
giving the month, day and year. This
function is particularly useful if you have
three separate variables in your SAS

data set that contain the month, day and
year, and you want to create a SAS data
set from these values.

o Example:
Date_var=MDY(Monthvar,
Dayvar, Yearvar);

o The MDY Function is often used
to create a SAS date variable
with the first (or last) day of the
month in which the event of
interest occurred. For example,
you may have a SAS date
variable representing the date
on which a transaction
occurred, and you want to “roll
up,” or aggregate all of the
transactions by month. Since
you can “nest” multiple SAS
programming language
functions in a single SAS
assignment statement, you
could easily create a new
variable representing the first
day of the month using the
following syntax:

o Trans_month = MDY(MONTH
(Trans_Date),1,
YEAR(Trans_Date)); [The
MONTH and YEAR Functions
are discussed below.]

• YYQ Function: A SAS date variable
with the value of the first day of the
calendar quarter is created by this
function.

o Example: Quarter =
YYQ(Yearvar,Qtr_var);

• DHMS Function: This function creates

a SAS datetime variable from
arguments giving the SAS date value,
hour, minute and seconds. If you
wanted to create a SAS datetime
variable with the value of noon on
December 25, 2002, the syntax would
be:

o XMAS_NOON = DHMS (MDY
(12,25,2002),12,00,00);

o The value returned by this
assignment statement is
1356436800, which is the
number of seconds from
midnight January 1, 1960 to
noon on December 25, 2002.

A constant can be substituted for any of the
variables in the function. In the “first day of the
month” example above, the constant ‘1’ was
supplied as the second argument to the MDY
function.

Functions that Extract ‘Parts’ from a SAS Date,
Time or Datetime Variable

Several SAS programming language functions
are available to extract a “part” or “piece” of a
SAS date, time or datetime variable. These
include:

• For SAS date variables:
 MONTH Returns the month
 DAY Returns the day
 YEAR Returns the year
 QTR Returns the quarter

WEEKDAY Returns the day of the
week (1 = Sunday)

• Example: July 4, 2003
Assume we have a data set with SAS date
values for all United States federal holidays in
2003. The dates are stored in a variable called
HOLIDAY_DATE. For July 4, 2003, the SAS
date value is 15890. Here is what you will
obtain by applying various SAS date functions to
that value:

Syntax

Value Returned
by Function

Month(Holiday_Date) 7
Day(Holiday_Date) 4
Year(Holiday_Date) 2003
QTR(Holiday_Date) 3
Weekday(Holiday_Date
)

6

• For SAS Time Variables
HOUR Returns the hour
MINUTE Returns the minute
SECOND Returns the second

• Example: 9:17 and 43 seconds PM

Assume that we have a variable giving us the
time at which an event occurred. For the
example time, the SAS time variable value
would be 76663, which is the number of
seconds which elapsed between midnight (time
variable value zero) and the given time. Here is

what you will obtain by applying various SAS
time functions to that value: (Notice that hour
values are given using “military time.”)

Syntax

Value Returned
by Function

Hour(Time_Var) 21
Minute(Time_var) 17
Seconds(Time_var) 43

• For SAS Datetime variables

The date and or time elements (or ‘parts’) of a
SAS datetime variable can be extracted using
the DATEPART and TIMEPART functions.
Suppose you are working with data from a
hospital admissions data set, where each
admission record is “timestamped” with the date
and time the patient’s record is entered in to the
system. For this example we will assume that
the date and time of admission is stored as a
SAS date variable called ADMISSION. So, for
an admission that occurred at 9:17 and 43
second PM on May 3, 2003, the timestamp
value is 1367615683, the number of seconds
between midnight on January 1, 1960 and the
given date. It’s obviously impossible to figure
out the “date” or the “time” part of this variable’s
value without some help.

Here is what you will obtain by using the
DATEPART and TIMEPART functions to the
datetime variable value give above:

Syntax

Value Returned
by Function

Datepart(Admission) 15828
Timepart(Admission) 76663

Using SAS Formats for date, time or datetime
variables will portray their values in a more
comprehensible way. This topic is discussed in
detail in a subsequent part of this paper.

Declaring Date, Time or Datetime Constants

You can easily declare a date, time or datetime
value using SAS Programming Language
elements specifically designed for that purpose.
These language elements eliminate the need for
you to calculate the SAS date, time or datetime
value that you want to specify.

• Declaring a date constant. Suppose
you want to apply a “Subsetting IF”
statement in a Data Step so that only
observations with a value of the variable
CHARGE_DATE that occurred after
May 1, 2002 will remain in the Program
Data Vector (PDV) for additional
processing. All you need to write is:

IF Charge_Date > ‘01May2003’D;

The letter “D” next to the text string with the day,
month and year instructs the SAS System to
convert the string to the appropriate SAS date
value. So, when the data step processes your
data, what the SAS System does is compare the
value of the numeric variable Charge_Date to
the numeric value of the SAS date constant.
Notice that the text string is in day/month/year
format.

• A time constant can be specified as a
text stirng, too. Here is an example:

If Charge_Time > ’14:35:00’T;

As with the date constant example given above,
the letter “T” next to the text string with the hour,
minutes and seconds instructs the SAS System
to calculate the appropriate SAS time value
(number of seconds from midnight) represented
by the text string.

• Specifying a datetime constant is also
possible. For example:

•
If Admit_DateTime >
‘01May2002:12:30:00’DT;

By now you’ve probably figured out that SAS will
calculate the appropriate datetime value
(number of seconds from midnight on January 1,
1960).

Functions for Determining Duration vs. Direct
Calculation of Duration

A common application of SAS System date and
time processing capabilities is to determine how
long a period has elapsed between two points in
time. This can be accomplished by one of two
methods:

• arithmetic operation (usually
subtraction and/or division) between
two SAS date, time or datetime
variables or between a SAS date,
time, or datetime variable and a
constant term

• use of the INTCK (‘in-tick’) function

Arithmetic Operation

The number of days which have elapsed
between two points in time is easily determined
by subtracting the value of one SAS date
variable from another, or by subtracting a SAS
date variable from a SAS date constant (or vice
versa, as may be appropriate). The result can
then be divided by an appropriate constant to
obtain the desired number of time periods
between the two values. A common
requirement is to determine how many years
have elapsed between two time periods:
 YEARS = (date2 - date1)/365.25;

returns the number of units of 365.25 which
have occurred between the two date variables.
This is a commonly accepted practice to
determine the number of years occurring
between two points in time. Similarly, 30.4 is
frequently used as the denominator to convert
the number of days to the number of months.

INTCK Function
A popular and powerful SAS function, INTCK, is
available to determine the number of time
periods which have been crossed between two
SAS date, time or datetime variables. The form
of this function is:
 INTCK(‘interval’,from,to)
Where:
 ‘interval’ = character constant or
variable name representing the time period of
interest enclosed in single quotes
 from = SAS date, time or datetime
value identifying the start of a time span
 to = SAS date, time or datetime
value identifying the end of a time span

This function will return the number of time
periods which have occurred (i.e., have been
crossed) between the values of the from and the
to variables.

Time Intervals
Among the time intervals you can specify as the
first argument to the INTCK Function are:

MONTH, DAY, YEAR, DECADE, HOUR,
MINUTE and SECOND.

In addition, four new date and datetime intervals
were implemented in Release 6.07 of SAS
System Software. They are:

WEEKDAY: counts the number of weekdays
between two time values, with the weekend
days counted as part of the preceding weekday.
By default, Saturday and Sunday are considered
“weekends.”

TENDAY: counts the number of ten-day
intervals between two time values. The default
is for the month to be broken in to three periods:
a) first through tenth days, b) eleventh through
twentieth day, c) twenty-first day through end of
the month.

SEMIMONTH: breaks each month in to two
periods, starting on the first and sixteenth days
of the month.

SEMIYEAR: specifies semiannual periods of
six months.

Arithmetic Operation vs. INTCK Function

Important differences exist between how these
two methods determine the number of periods of
time that have elapsed between events. These
differences can be demonstrated as follows.
Suppose a child is born (and therefore ‘admitted’
to the hospital) on December 28, 2002 and
discharged on January 2, 2003. The child is
therefore five days old at discharge. Subtracting
SAS date value for discharge date from the SAS
date value for admission date
yields 5, which is the desired result. But, how
many years old is the child? An acceptable
estimated answer is 5/365.25, or .02 years. But,
using the INTCK function, with the YEAR
interval argument

AGE=INTCK(‘YEAR’, Admit_date,
Discharge_Date);

returns 1 as the result. Why? Because the
INTCK function counts the number of time
intervals which have been crossed between the
from and to expressions arguments of the
function. Since YEAR was specified as the
desired interval, and January 1 is ‘enclosed’
between the from and to arguments, the child’s

age is given by the result of the INTCK function
to be 1”year”, rather than 5 “days”.

Users should take in to account the important
differences in results which will occur from using
one or the other of these approaches and make
sure that the one the apply is appropriate for
their particular data processing/analysis.
The INTNX Function

Also useful is the INTNX function, which creates
a SAS date, time or datetime value that is a
given number of time intervals from a starting
value. The form of this function is:

 INTNX(‘interval’,from,to)

Where interval, from and to have the same
meanings and definitions as for the INTCK
function described earlier. For example,
suppose a hospital wanted to send a postcard to
the parents of newborns three months after the
child is born reminding them to schedule a
follow-up visit. Using:

MAILDATE = INTNX(‘month’,BDATE,3);

Where BDATE is a date variable representing
date of birth, the INTNX function will return
values of MAILDATE which are the SAS date
values for the first day of the month which is
three months past the child’s birthday. Thus, the
INTNX and INTCK functions operate in a similar
fashion by counting the date boundaries which
are crossed.

Alternatively, if the reminder postcard is to be
generated 90 days after the child is born, a
statement such as:

MAILDATE = BDATE + 90;

will assign the value of the variable MAILDATE
equal to the child’s birthday plus 90 days, or the
number of days from January 1, 1960 to the
child’s birthday plus an additional 90 days. This
result differs from that obtained by using the
INTNX function, which by default would return
the SAS date value for the first day of the month
three months after the child was born.

Enhancements to the INTNX Function in
Release 6.11 of the SAS System.

Prior to Release 6.11 the INTNX function
returned a value representing the beginning of

the interval specified in the function’s third
argument. For example, the value returned by
specifying MONTH as the desired interval was
the first day of the month.

Starting with Release 6.11, an optional fourth
argument is available for the INTNX function.
Users can specify BEGINNING (the default),
MIDDLE, or END. Using the MIDDLE argument
returns a value representing the period’s
midpoint and END returns a value representing
the end of the period. For example, if a user
wanted to advance a date value from January 1,
2003 to June 30, 2003, the END argument
would be applied as follows:

NEWVAR =
INTNX(‘Month’,’01Jan2003’d,5,’END’)
;

The END alignment argument is quite useful
when creating a SAS date variable representing
the last day of the month in which

Other Useful Functions

The table below describes other SAS
Programming Language Functions that may be
useful when working with date, time, or datetime
variable processing.

Function
Name

Description

Today() Returns the SAS date value
from the system clock

Time() Returns the SAS time value
from the system clock

Datetime() Returns the SAS datetime
value from the system clock

Using these functions can avoid the need to
“hard code” date values in your programs. For
example, if you need to run a production
program that, say, calculates the number of
days between today’s date and the date an
insurance claim was entered in to the data base,
you could write the following assignment
statement in a Data Step:

Days_Elapsed = TODAY() -
Enter_Date;

SAS will read the SAS date value from the
system clock when executing your Data Step.

 Compound Statements

Combining SAS date, time and datetime
statements in to a single expression can reduce
processing time and programming steps. Here
are two examples:

Compound Subsetting IF Statement:
Example 1

Two or more conditions for a SAS date, time or
datetime variable can be tested in the same
“Subsetting IF” or assignment statement. For
example, if a researcher working on a hospital
admissions data set desired to only analyze
records where patients were admitted in the
third quarter of 2001, she could write:

IF YEAR(ADMIT) = 2001 and
 QTR(ADMIT) = 3;

Compound Subsetting IF Statement:
Example 2

As with the previous example, placing all
subsetting conditions in a single programming
statement often enhances program
performance. If the variable ADMIT was a
datetime variable, the following compound
statement would select only those observations
where the patient was admitted on a Saturday or
Sunday after 4:00 pm during the second quarter
of 2002:
IF YEAR(DATEPART(ADMIT)) = 2002
 AND
QTR(DATEPART(ADMIT)) = 2
 AND
WEEKDAY(DATEPART(ADMIT)) IN(1,7)
 AND
HOUR(TIMEPART(ADMIT)) > 16;

Notice that the above statement operates from
‘largest’ to ‘smallest’ time interval: year, quarter,
weekday, hour. This arrangement helps reduce
the average amount of time each observation
from the “source” data set will spend in the
Program Data Vector, and depending on the
number of observations, in the data set, may
reduce program processing time. .

Formats: Altering External Representations
of SAS Date, Time and Datetime Variables

Treating date, time and datetime variables as
numeric variables makes it easier for the SAS

System to operate on them than if they were
character variables. This, however, makes in
nearly impossible for a (human) end-user to
discern the values of these variables and to
represent them in a meaningful way in reports or
other output.

This problem is easily solved by appropriate use
of one of dozens SAS formats for date, time or
datetime variables. Among the commonly used
formats are:

Format: Result:
MMDDYY10. 07/04/1997
DDMMYY10. 04/07/1997
WORDDATE18
.

July 4, 1997

WEEKDATE29. Friday, July 4, 1997
MONYY5. JUL97
MONYY7. JUL1997

Two new date formats were added in Release
8.2 of the SAS System that are designed to
ease the portrayal of datetime variable values.
These formats might, depending on your
specific programming/analytical requirements,
eliminate the need to use the DATEPART
programming language function, described
above, to obtain the date “part” of a SAS date
time variable as a separate variable in your data
set.

For example, here is how these two new formats
would portray the SAS datetime value of
1367411430, or May 1, 2003 at 12:30 pm. The
table below also shows the representation of
this value using the Datetime20. format for
comparison.

Format: Result:
Datetime20. 01MAY2003:12:30:30
DTDATE. 01MAY03
DTWKDATX. Thursday, 1 May 2003

SAS Procedures: Aggregating and
Interpolating Data

Data collected in the time domain can be
aggregated from a lower to a higher period
(e.g., monthly to yearly) using Base SAS
software procedures such as FREQ, MEANS,

SUMMARY, or UNIVARIATE. The appropriate
date, time or datetime variable(s) are used in
either the CLASS or BY statements (or both, if
appropriate).

Some analyses require that a time series be
interpolated by estimating from higher-period
observations to lower-period observations.
Estimates of monthly values of a time series
containing quarterly observations, may, for
example, be desired.

Another key issue in aggregating and/or
interpolating data collected in the time domain is
treatment of missing observations. Some
statistical techniques (e.g., Auto-Regressive
Integrated Moving Average, or ARIMA models)
for analyzing time series data are hampered by
the presence of missing values; in other
situations an analyst may want to estimate
values for missing observations before
performing aggregation and/or interpolation
operations. In any event, substantial user
intervention may be required in the Data Step to
substitute ‘appropriate’ values for missing
observations.

PROC EXPAND, in the SAS/ETS™ module,
performs both aggregation and interpolation of
data collected in the time domain, as well as
estimation of the values of missing observations
in the data set. This procedure can also apply a
series of transformation operators to your data,
either prior to, or after it performs the desired
interpolation and/or aggregation. Among the
transformation operations available in this
procedure are forward and backward moving
averages, moving sums, and other “moving time
window” statistics.

If you have SAS/ETS software, take a few
minutes to learn what PROC EXPAND can do
for your data and time variable processing.
You’ll probably learn that using it can save you
lots of time you’d otherwise spend writing long
Data Steps to handle complex inter-observation
processing of the observations in your data sets.

SAS System Options for Dates and Times

There are several Options that address how the
SAS System works with dates and times.

• NODATE: This Option suppresses the
printing of the date and time of SAS

System initialization at the top of each
page of output in your Output Window.

• DTRESET: New to SAS 9.1, this Option
will print the current date and time in the
Output window, rather than the date and
time of SAS System initialization. This
option will probably be helpful for users
submitting very long jobs who need to
know the precise time at which the job
generated a specific piece of output.

• YEARCUTOFF: This option is used to
assign the century to dates where two-
digit years are used. Starting in Version
8, the default value of this option is 1920
(and remains the default in SAS 9, too).

The easiest (and least ambiguous) way to
ensure your SAS date or datetime values refer
to the appropriate century is to use a four-digit
year value, rather than a two-digit value. For
example, if your YEARCUTOFF system option
value is set to 1920 (the default), the value of
the variable DATE=’01JAN00’D represents the
number of days from January 1, 1900 to
January 1, 2000, which is a negative number. If,
however, the user set DATE=’01JAN1900’D,
SAS would set the value of the variable DATE to
the number of days from January 1, 1900 to
January 1, 1960. Taking the time to code those
two extra keystrokes can potentially save you
lots of aggravation.

Conclusion

There are many tools available in the SAS
System to work with your date and time
variables. From functions to formats, and from
procedures to informats, users of SAS software
will find it easy to work with date and time
variables once they have mastered the core
concepts presented in this paper.

Note: SAS and SAS/ETS are the registered
trademarks of SAS Institute, Cary, NC, USA

References

Broder, John M., and Laurence Zuckerman,
“Computers Are the Future But Remain Unready
for It,” The New York Times, April 8, 1997

DiIorio, Frank C., SAS® Applications
Programming: A Gentle Introduction,
Belmont, California: Duxbury Press, 1991

Langston, Richard D., and Chris Williams,
“The Year 2000: Preparing for the
Inevitable,” Proceedings of the Twenty-
Second Annual SAS Users Group
International Conference, Cary, NC: SAS
Institute, Inc., 1997

SAS Institute Inc., SAS Language:
Reference, Version 6, First Edition Cary,
NC: SAS Institute, Inc., 1990

SAS Institute Inc., SAS Language and
Procedures: Usage, Version 6, First Edition,
Cary, NC: SAS Institute, Inc., 1989

SAS Institute, Inc., SAS/ETS® User’s Guide,
Version 6, Second Edition, Cary, NC: SAS
Institute, Inc., 1993

SAS Institute, Inc., SAS® Technical Report
P-222, Changes and Enhancements to
Base SAS® Software, Release 6.07, Cary,
NC: SAS Institute, Inc., 1991

SAS Institute, Inc., SAS ® Software:
Changes and Enhancements, Release 6.10,
Cary, NC: SAS Institute, Inc., 1994

SAS Institute, Inc., SAS ® Software:
Changes and Enhancements, Release 6.11,
Cary, NC: SAS Institute, Inc., 1995

The author may be contacted at:

Sierra Information Services, Inc.
19229 Sonoma Highway PMB 264
Sonoma, CA 95476 USA
707 996 7380
SierraInfo @ AOL.COM
www.SierraInformation.com

